This report evaluates the simulation results for the regionMatrix()
output.
Table showing the results between whether the transcript was set to be differentially expressed (DE) and if it overlaps (minimum 1 bp) any candidate region.
## Overlaps DE region
## DE status TRUE Sum
## FALSE 48 48
## TRUE 48 48
## Sum 96 96
The results are not the same using a minimum overlap of 4 bp between transcripts and candidate regions with a q-value < 0.05. Thus, we will use only the DE regions with q-value < 0.05.
## Overlaps DE region (sig q-value)
## DE status FALSE TRUE Sum
## FALSE 28 20 48
## TRUE 3 45 48
## Sum 31 65 96
At a finer level, there is a difference in the number of exons per transcript overlapping all candidate regions vs the regions with q-value < 0.05.
##
## 0 1 2 3 4 5 6 7 8 9 16
## 51 20 4 2 7 3 1 2 2 2 2
We can separate the transcripts by their experiment setup case. That is, whether its from a gene with:
Then compare against the results where
Failed.DE | failed.Reg | Success.DE | success.Reg | |
---|---|---|---|---|
bothDE | 0 | 0 | 24 | 0 |
noneDE | 0 | 8 | 0 | 16 |
oneDE | 0 | 12 | 12 | 0 |
singleDE | 3 | 0 | 9 | 0 |
singleNotDE | 0 | 0 | 0 | 12 |
The 3 Failed.DE cases (false negatives) are mostly short single transcript genes (one exon only) where 2 were set to have low expression on one group, normal on the other two.
tx_idx | tx_n | tx_i | gene_id | ucsckg_id | fasta_i | DE | group1 | group2 | group3 | width | readspertx | mean1 | mean2 | mean3 | case | result | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
17 | 20 | 1 | 1 | 100422998 | uc021wnn.1 | 317 | TRUE | low | normal | normal | 86 | 34 | 17 | 34 | 34 | singleDE | Failed.DE |
22 | 27 | 1 | 1 | 100500833 | uc010gvn.2 | 347 | TRUE | normal | normal | high | 110 | 44 | 44 | 44 | 88 | singleDE | Failed.DE |
24 | 29 | 1 | 1 | 100500901 | uc021wny.1 | 423 | TRUE | normal | normal | low | 58 | 23 | 23 | 23 | 12 | singleDE | Failed.DE |
However, 4 similar cases with short transcripts were successfully detected. So it's likely that a lower F-stat cutoff would have picked up these false negative cases.
tx_idx | tx_n | tx_i | gene_id | ucsckg_id | fasta_i | DE | group1 | group2 | group3 | width | readspertx | mean1 | mean2 | mean3 | case | result | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 2 | 1 | 1 | 100126318 | uc021wmk.1 | 181 | TRUE | low | normal | normal | 78 | 31 | 16 | 31 | 31 | singleDE | Success.DE |
10 | 12 | 1 | 1 | 100302118 | uc021wls.1 | 127 | TRUE | normal | high | normal | 78 | 31 | 31 | 62 | 31 | singleDE | Success.DE |
11 | 13 | 1 | 1 | 100302149 | uc021wrh.1 | 796 | TRUE | normal | normal | low | 66 | 26 | 26 | 26 | 13 | singleDE | Success.DE |
23 | 28 | 1 | 1 | 100500860 | uc021wlo.1 | 115 | TRUE | normal | low | normal | 88 | 35 | 35 | 18 | 35 | singleDE | Success.DE |
More info:
## IntegerList of length 3
## [["uc021wnn.1"]] 86
## [["uc010gvn.2"]] 110
## [["uc021wny.1"]] 58
## IntegerList of length 4
## [["uc021wmk.1"]] 78
## [["uc021wls.1"]] 78
## [["uc021wrh.1"]] 66
## [["uc021wlo.1"]] 88
## Warning: Calling species() on a TxDb object is *deprecated*.
## Please use organism() instead.
Coverage plots with F-statistics shown at the bottom for the false negative cases. One plot it shown for each exon that compose these transcripts.
Out of the 20 failed.Reg transcripts (false positives), 12 of them are from the oneDE case. You could then argue that they are really not false positives. However, 8 and 0 transcripts are from the noneDE and singleNotDE cases respectively which would be the truly false positives.
tx_idx | tx_n | tx_i | gene_id | ucsckg_id | fasta_i | DE | group1 | group2 | group3 | width | readspertx | mean1 | mean2 | mean3 | case | result | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
26 | 6 | 2 | 2 | 100130717 | uc011agh.3 | 17 | FALSE | normal | normal | normal | 650 | 260 | 260 | 260 | 260 | oneDE | failed.Reg |
37 | 56 | 2 | 1 | 10738 | uc010gwn.3 | 467 | FALSE | normal | normal | normal | 1488 | 595 | 595 | 595 | 595 | oneDE | failed.Reg |
47 | 80 | 2 | 1 | 128977 | uc002zpi.3 | 84 | FALSE | normal | normal | normal | 1558 | 623 | 623 | 623 | 623 | oneDE | failed.Reg |
49 | 85 | 2 | 1 | 129138 | uc003auc.3 | 576 | FALSE | normal | normal | normal | 2149 | 860 | 860 | 860 | 860 | oneDE | failed.Reg |
95 | 196 | 2 | 1 | 25776 | uc003awb.4 | 613 | FALSE | normal | normal | normal | 1287 | 515 | 515 | 515 | 515 | noneDE | failed.Reg |
96 | 196 | 2 | 2 | 25776 | uc003awc.3 | 614 | FALSE | normal | normal | normal | 1147 | 459 | 459 | 459 | 459 | noneDE | failed.Reg |
98 | 206 | 2 | 2 | 25817 | uc003bio.4 | 836 | FALSE | normal | normal | normal | 2652 | 1061 | 1061 | 1061 | 1061 | oneDE | failed.Reg |
121 | 266 | 2 | 1 | 339669 | uc003aqe.3 | 538 | FALSE | normal | normal | normal | 1049 | 420 | 420 | 420 | 420 | oneDE | failed.Reg |
125 | 272 | 2 | 1 | 3761 | uc003avs.1 | 606 | FALSE | normal | normal | normal | 1913 | 765 | 765 | 765 | 765 | oneDE | failed.Reg |
132 | 283 | 2 | 2 | 3976 | uc011aks.2 | 379 | FALSE | normal | normal | normal | 3987 | 1595 | 1595 | 1595 | 1595 | oneDE | failed.Reg |
139 | 307 | 2 | 1 | 4248 | uc003axv.4 | 653 | FALSE | normal | normal | normal | 4987 | 1995 | 1995 | 1995 | 1995 | noneDE | failed.Reg |
140 | 307 | 2 | 2 | 4248 | uc010gxy.3 | 652 | FALSE | normal | normal | normal | 5102 | 2041 | 2041 | 2041 | 2041 | noneDE | failed.Reg |
150 | 321 | 2 | 2 | 4689 | uc003apz.4 | 533 | FALSE | normal | normal | normal | 1646 | 658 | 658 | 658 | 658 | oneDE | failed.Reg |
167 | 391 | 2 | 1 | 646023 | uc002zzz.2 | 257 | FALSE | normal | normal | normal | 1769 | 708 | 708 | 708 | 708 | noneDE | failed.Reg |
168 | 391 | 2 | 2 | 646023 | uc003aad.1 | 256 | FALSE | normal | normal | normal | 2568 | 1027 | 1027 | 1027 | 1027 | noneDE | failed.Reg |
175 | 400 | 2 | 1 | 6523 | uc003amc.3 | 457 | FALSE | normal | normal | normal | 5061 | 2024 | 2024 | 2024 | 2024 | oneDE | failed.Reg |
190 | 417 | 2 | 2 | 6948 | uc003air.2 | 407 | FALSE | normal | normal | normal | 2006 | 802 | 802 | 802 | 802 | oneDE | failed.Reg |
192 | 421 | 2 | 2 | 7122 | uc010grr.2 | 91 | FALSE | normal | normal | normal | 1720 | 688 | 688 | 688 | 688 | oneDE | failed.Reg |
215 | 473 | 2 | 1 | 83874 | uc003ahk.4 | 383 | FALSE | normal | normal | normal | 2038 | 815 | 815 | 815 | 815 | noneDE | failed.Reg |
216 | 473 | 2 | 2 | 83874 | uc010gvu.3 | 382 | FALSE | normal | normal | normal | 2017 | 807 | 807 | 807 | 807 | noneDE | failed.Reg |
Coverage plots with F-statistics shown at the bottom for the false positive cases. One plot it shown for each exon that compose these transcripts. For the 12 transcripts from the oneDE case, it can be seen how at least one plot contains a DE region overlapping an exon set to be DE. .
Some complex situations where there are exons on both strands can be observed.
In some simulations, we found what seemed to be false positive transcripts but turned out to overlap DE regions in sections where there are exons on both the positive and negative strands and at least one of the exons was set to be DE.
##
## 0
## 8
## IntegerList of length 8
## [["uc003awb.4"]] 98 140 116 106 119 692
## [["uc003awc.3"]] 98 116 106 119 692
## [["uc003axv.4"]] 238 4848
## [["uc010gxy.3"]] 4971
## [["uc002zzz.2"]] 126 171 128 149 173 654 1167
## [["uc003aad.1"]] 126 171 128 319 118 149 274 482
## [["uc003ahk.4"]] 294 100 108 107 115 66 190 155 862
## [["uc010gvu.3"]] 294 121 108 107 115 66 190 155 862
## [1] 43 44 45 46 47 48 48 49 50 51 51 52 52 53 53 82 82
## [18] 83 83 84 84 85 85 86 86 87 87 88 88 89 89 90 90 183
## [35] 183 184 185 185 186 186 187 187 188 188 204 205 205
As it can be seen below, 8 apparent false positive transcripts from the noneDE case overlap (when strand is not taken into account) genes where at least one of two transcripts was set to be DE.
tx_idx | tx_n | tx_i | gene_id | ucsckg_id | fasta_i | DE | group1 | group2 | group3 | width | readspertx | mean1 | mean2 | mean3 | case | result |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
For each gene, if at least one transcript is set to be DE then we consider the gene to be DE. Then, we check if the gene overlaps at least one DE region.
## Overlaps DE region
## DE status FALSE TRUE Sum
## FALSE 20 4 24
## TRUE 3 33 36
## Sum 23 37 60
The results from the simulation are promising as most transcripts were correctly classified as differentially expressed or not by in the expressed-regions analysis.
The majority of the false negative cases involved short single transcript genes with one group having low expression relative to the other two. These cases could potentially be mitigated by lowering the F-statistic threshold used in the derfinder
analysis.
In some simulations there are some apparent false positives which are due to transcripts on one strand set not to be DE overlapping transcripts from the other strand set to be DE. This situation could be solved with strand-specific RNA-seq data and running derfinder
for each strand separately.
Minimum number of reads per transcript as well as per sample.
## Distribution of the minimum number of reads per transcript
summary(apply(readmat, 1, min))
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.0 213.2 453.5 625.5 783.0 2747.0
## Distribution of the minimum number of reads per sample
summary(apply(readmat, 2, min))
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.000 7.000 9.000 9.067 11.000 19.000
The minimum number of reads per transcript for a given sample is 1.
Next we can evaluate the simulation by classifying the exonic segments as whether they should be DE or not. Then, we can find if the DE regions overlap such segments and viceversa. We would expect that the DE regions with a q-value < 0.05 would only overlap segments that were set to be DE.
We can check the if the exonic segments overlap one or more DE region similarly to what we did earlier at the transcript and gene level. The results change depending on whether only the DE regions with significant q-value or all of the DE regions are used.
## Overlaps DE region (sig q-value)
## DE status FALSE TRUE Sum
## FALSE 104 7 111
## TRUE 11 158 169
## Sum 115 165 280
## Overlaps DE region
## DE status FALSE TRUE Sum
## FALSE 0 111 111
## TRUE 1 168 169
## Sum 1 279 280
Using the DE regions with significant q-values, there are 11 false negative cases. From the exploration shown below, half of them seem short. Most of the false negative segments correspond to genes from the oneDE scenario. Thus revealing that the complexity of that scenario makes it challenging to identify significant DE regions.
## Explore false negative segments using DE regions with sig q-value
seg.fn <- which(segs$DE & !countOverlaps(segs, qval) > 0)
## Around half of these segments are short
summary(width(segs[seg.fn]))
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 58.0 98.0 179.0 295.6 335.5 853.0
chosen[chosen$gene_id == '6523', ]
## tx_idx tx_n tx_i gene_id ucsckg_id fasta_i DE group1 group2 group3
## 175 400 2 1 6523 uc003amc.3 457 FALSE normal normal normal
## 176 400 2 2 6523 uc011alz.2 458 TRUE normal normal high
## width readspertx mean1 mean2 mean3 case result
## 175 5061 2024 2024 2024 2024 oneDE failed.Reg
## 176 4779 1912 1912 1912 3824 oneDE Success.DE
## 11 of the 37 segments are from gene with id 6523
tail(sort(table(names(segs[seg.fn]))))
##
## 25817 3761 3976 6523 7494 100130717
## 1 1 1 1 1 2
## Cases of the genes with at least one FN segment
table(tapply(subset(chosen, gene_id %in% names(seg.fn))$case, subset(chosen, gene_id %in% names(seg.fn))$gene_id, unique))
##
## bothDE oneDE singleDE
## 1 6 3
## Type of gene where the segments come from. Mostly oneDE genes
table(sapply(names(segs[seg.fn]), function(x) { unique(chosen$case[chosen$gene_id == x]) }))
##
## bothDE oneDE singleDE
## 1 7 3
Coverage plots with F-statistics shown at the bottom for the false negative exonic segments grouped by their gene.
## Do DE regions overlap segments that are set to be DE?
reg.ov <- findOverlaps(fullRegionGR, segs)
fullRegionGR$overlap <- sapply(seq_len(length(fullRegionGR)), function(x) {
y <- which(queryHits(reg.ov) == x)
if(length(y) == 0) return(NA)
any(segs$DE[ subjectHits(reg.ov)[y] ])
})
We can check how many segments each DE region overlaps. Ideally they should all overlap at least one segment, but there are some cases where this could not happen (2 in this case). Possibly because of small mismatches between the transcripts and the actual mRNA used in the simulation. Alternatively, alignment problems could explain such cases.
## Do DE regions overlap at least one segment?
table(countOverlaps(fullRegionGR, segs))
##
## 0 1 2 3 4
## 2 223 19 2 3
## Widths of DE regions not overlapping any segment
width(fullRegionGR[is.na(fullRegionGR$overlap)])
## [1] 143 125
## Do these DE regions have a significant q-value?
table(fullRegionGR$sigQval[is.na(fullRegionGR$overlap)])
##
## TRUE FALSE
## 1 1
We can repeat the same exploration but now requiring at least a 10bp overlap.
## Do DE regions overlap segments that are set to be DE?
reg.ov10 <- findOverlaps(fullRegionGR, segs, minoverlap = 10)
fullRegionGR$overlap10 <- sapply(seq_len(length(fullRegionGR)), function(x) {
y <- which(queryHits(reg.ov10) == x)
if(length(y) == 0) return(NA)
any(segs$DE[ subjectHits(reg.ov10)[y] ])
})
## How many DE regions are smaller than 10bp?
table(width(fullRegionGR) < 10)
##
## FALSE TRUE
## 248 1
## How many exonic segments are smaller than 10bp?
table(width(segs) < 10)
##
## FALSE TRUE
## 279 1
## Do DE regions (min 10bp long) overlap at least one segment?
table(countOverlaps(fullRegionGR[width(fullRegionGR) >= 10], segs, minoverlap = 10))
##
## 0 1 2 3 4
## 2 223 18 2 3
## Widths of DE regions not overlapping any segment
width(fullRegionGR[is.na(fullRegionGR$overlap10) & width(fullRegionGR) >= 10])
## [1] 143 125
## Do these DE regions have a significant q-value?
table(fullRegionGR$sigQval[is.na(fullRegionGR$overlap10) & width(fullRegionGR) >= 10])
##
## TRUE FALSE
## 1 1
And similarly with a minimum overlap of 20bp.
## Do DE regions overlap segments that are set to be DE?
reg.ov20 <- findOverlaps(fullRegionGR, segs, minoverlap = 20)
fullRegionGR$overlap20 <- sapply(seq_len(length(fullRegionGR)), function(x) {
y <- which(queryHits(reg.ov20) == x)
if(length(y) == 0) return(NA)
any(segs$DE[ subjectHits(reg.ov20)[y] ])
})
## How many DE regions are smaller than 20bp?
table(width(fullRegionGR) < 20)
##
## FALSE TRUE
## 248 1
## How many exonic segments are smaller than 20bp?
table(width(segs) < 20)
##
## FALSE TRUE
## 277 3
## Do DE regions (min 20bp long) overlap at least one segment?
table(countOverlaps(fullRegionGR[width(fullRegionGR) >= 20], segs, minoverlap = 20))
##
## 0 1 2 3 4
## 2 224 17 2 3
## Widths of DE regions not overlapping any segment
width(fullRegionGR[is.na(fullRegionGR$overlap20) & width(fullRegionGR) >= 20])
## [1] 143 125
## Do these DE regions have a significant q-value?
table(fullRegionGR$sigQval[is.na(fullRegionGR$overlap20) & width(fullRegionGR) >= 20])
##
## TRUE FALSE
## 1 1
However, the main result is whether the DE regions overlap segments expected to be DE. Note that for this comparison, DE regions are unstranded and could potentially overlap two segments from different strands where only one of them was set to be DE.
## q-value < 0.05
## Overlaps a DE segment TRUE FALSE Sum
## FALSE 6 95 101
## TRUE 137 9 146
## Sum 143 104 247
Regardless of whether the DE region p-value is significant, we see that 40.89 percent of the DE regions overlapping at least one segment, incorrectly overlap a segment set not to be DE.
Out of the 249 DE regions, only 248 are at least 10bp long. They are compared against 279 exonic segments at least 10bp long out of the total 280. Only 2 DE regions 10bp or longer do not overlap any exonic segment regardless of its DE status.
## q-value < 0.05
## Overlaps a DE segment TRUE FALSE Sum
## FALSE 6 95 101
## TRUE 136 9 145
## Sum 142 104 246
Regardless of whether the DE region p-value is significant, we see that 41.06 percent of the DE regions overlapping at least one segment (min overlap 10bp), incorrectly overlap a segment set not to be DE.
Out of the 249 DE regions, only 248 are at least 20bp long. They are compared against 277 exonic segments at least 20bp long out of the total 280. Only 2 DE regions 20bp or longer do not overlap any exonic segment regardless of its DE status.
## q-value < 0.05
## Overlaps a DE segment TRUE FALSE Sum
## FALSE 6 95 101
## TRUE 136 9 145
## Sum 142 104 246
Regardless of whether the DE region p-value is significant, we see that 41.06 percent of the DE regions overlapping at least one segment (min overlap 20bp), incorrectly overlap a segment set not to be DE.
The observed FDR is lower than 0.05, which is what we would expect.
## [1] "2015-03-31 11:58:59 EDT"
## user system elapsed
## 415.143 3.806 439.700
## setting value
## version R Under development (unstable) (2014-11-01 r66923)
## system x86_64, darwin10.8.0
## ui X11
## language (EN)
## collate en_US.UTF-8
## tz America/New_York
## package * version date source
## acepack 1.3.3.3 2013-05-03 CRAN (R 3.2.0)
## AnnotationDbi * 1.29.20 2015-03-19 Bioconductor
## Biobase * 2.27.3 2015-03-27 Bioconductor
## BiocGenerics * 0.13.10 2015-03-27 Bioconductor
## BiocParallel 1.1.21 2015-03-24 Bioconductor
## biomaRt 2.23.5 2014-11-22 Bioconductor
## Biostrings 2.35.12 2015-03-26 Bioconductor
## biovizBase 1.15.3 2015-03-30 Bioconductor
## bitops 1.0.6 2013-08-17 CRAN (R 3.2.0)
## BSgenome 1.35.20 2015-03-27 Bioconductor
## bumphunter * 1.7.6 2015-03-13 Github (lcolladotor/bumphunter@37d10e7)
## cluster 2.0.1 2015-01-31 CRAN (R 3.2.0)
## codetools 0.2.11 2015-03-10 CRAN (R 3.2.0)
## colorout * 1.0.2 2014-11-03 local
## colorspace 1.2.6 2015-03-11 CRAN (R 3.2.0)
## DBI * 0.3.1 2014-09-24 CRAN (R 3.2.0)
## derfinder * 1.1.17 2015-03-14 Github (lcolladotor/derfinder@3532e0c)
## derfinderHelper * 1.1.6 2015-03-15 Bioconductor
## derfinderPlot * 1.1.6 2015-03-14 Github (lcolladotor/derfinderPlot@1319754)
## devtools * 1.6.1 2014-10-07 CRAN (R 3.2.0)
## dichromat 2.0.0 2013-01-24 CRAN (R 3.2.0)
## digest 0.6.8 2014-12-31 CRAN (R 3.2.0)
## doRNG 1.6 2014-03-07 CRAN (R 3.2.0)
## evaluate 0.5.5 2014-04-29 CRAN (R 3.2.0)
## foreach * 1.4.2 2014-04-11 CRAN (R 3.2.0)
## foreign 0.8.63 2015-02-20 CRAN (R 3.2.0)
## formatR 1.0 2014-08-25 CRAN (R 3.2.0)
## Formula 1.2.0 2015-01-20 CRAN (R 3.2.0)
## futile.logger 1.4 2015-03-21 CRAN (R 3.2.0)
## futile.options 1.0.0 2010-04-06 CRAN (R 3.2.0)
## GenomeInfoDb * 1.3.16 2015-03-27 Bioconductor
## GenomicAlignments 1.3.32 2015-03-18 Bioconductor
## GenomicFeatures * 1.19.36 2015-03-30 Bioconductor
## GenomicFiles 1.3.14 2015-03-07 Bioconductor
## GenomicRanges * 1.19.48 2015-03-27 Bioconductor
## GGally 0.4.8 2014-08-26 CRAN (R 3.2.0)
## ggbio 1.15.2 2015-03-24 Bioconductor
## ggplot2 1.0.0 2014-05-21 CRAN (R 3.2.0)
## graph 1.45.2 2015-03-01 Bioconductor
## gridExtra 0.9.1 2012-08-09 CRAN (R 3.2.0)
## gtable 0.1.2 2012-12-05 CRAN (R 3.2.0)
## Hmisc 3.14.5 2014-09-12 CRAN (R 3.2.0)
## htmltools 0.2.6 2014-09-08 CRAN (R 3.2.0)
## IRanges * 2.1.43 2015-03-07 Bioconductor
## iterators * 1.0.7 2014-04-11 CRAN (R 3.2.0)
## knitr * 1.7 2014-10-13 CRAN (R 3.2.0)
## knitrBootstrap 1.0.0 2014-11-03 Github (jimhester/knitrBootstrap@76c41f0)
## lambda.r 1.1.7 2015-03-20 CRAN (R 3.2.0)
## lattice 0.20.30 2015-02-22 CRAN (R 3.2.0)
## latticeExtra 0.6.26 2013-08-15 CRAN (R 3.2.0)
## limma * 3.23.11 2015-03-15 Bioconductor
## locfit * 1.5.9.1 2013-04-20 CRAN (R 3.2.0)
## markdown 0.7.4 2014-08-24 CRAN (R 3.2.0)
## MASS 7.3.40 2015-03-21 CRAN (R 3.2.0)
## Matrix 1.1.5.1 2015-03-23 CRAN (R 3.2.0)
## matrixStats 0.14.0 2015-02-14 CRAN (R 3.2.0)
## mime 0.3 2015-03-29 CRAN (R 3.2.0)
## munsell 0.4.2 2013-07-11 CRAN (R 3.2.0)
## nnet 7.3.9 2015-02-11 CRAN (R 3.2.0)
## org.Hs.eg.db * 3.0.0 2014-09-26 Bioconductor
## OrganismDbi 1.9.15 2015-03-30 Bioconductor
## pkgmaker 0.22 2014-05-14 CRAN (R 3.2.0)
## plyr 1.8.1 2014-02-26 CRAN (R 3.2.0)
## proto 0.3.10 2012-12-22 CRAN (R 3.2.0)
## qvalue * 1.99.0 2015-03-30 Bioconductor
## RBGL 1.43.0 2014-10-14 Bioconductor
## RColorBrewer 1.1.2 2014-12-07 CRAN (R 3.2.0)
## Rcpp 0.11.5 2015-03-06 CRAN (R 3.2.0)
## RCurl 1.95.4.5 2014-12-28 CRAN (R 3.2.0)
## registry 0.2 2012-01-24 CRAN (R 3.2.0)
## reshape 0.8.5 2014-04-23 CRAN (R 3.2.0)
## reshape2 1.4.1 2014-12-06 CRAN (R 3.2.0)
## rmarkdown 0.3.3 2014-09-17 CRAN (R 3.2.0)
## rngtools 1.2.4 2014-03-06 CRAN (R 3.2.0)
## rpart 4.1.9 2015-02-24 CRAN (R 3.2.0)
## Rsamtools 1.19.49 2015-03-27 Bioconductor
## RSQLite * 1.0.0 2014-10-25 CRAN (R 3.2.0)
## rstudioapi 0.2 2014-12-31 CRAN (R 3.2.0)
## rtracklayer 1.27.10 2015-03-27 Bioconductor
## S4Vectors * 0.5.22 2015-03-06 Bioconductor
## scales 0.2.4 2014-04-22 CRAN (R 3.2.0)
## stringr 0.6.2 2012-12-06 CRAN (R 3.2.0)
## survival 2.38.1 2015-02-24 CRAN (R 3.2.0)
## TxDb.Hsapiens.UCSC.hg19.knownGene * 3.0.0 2014-09-26 Bioconductor
## VariantAnnotation 1.13.46 2015-03-26 Bioconductor
## XML 3.98.1.1 2013-06-20 CRAN (R 3.2.0)
## xtable 1.7.4 2014-09-12 CRAN (R 3.2.0)
## XVector * 0.7.4 2015-02-08 Bioconductor
## yaml 2.1.13 2014-06-12 CRAN (R 3.2.0)
## zlibbioc 1.13.3 2015-03-23 Bioconductor