R/renderReport.R
renderReport.Rd
This function generates a HTML report with quality checks, genome location
exploration, and an interactive table with the results. Other output formats
are possible such as PDF but lose the interactivity. Users can easily append
to the report by providing a R Markdown file to customCode
, or can
customize the entire template by providing an R Markdown file to
template
.
renderReport(
regions,
project = "",
pvalueVars = c(`P-values` = "pval"),
densityVars = NULL,
significantVar = mcols(regions)$pval <= 0.05,
annotation = NULL,
nBestRegions = 500,
customCode = NULL,
outdir = "regionExploration",
output = "regionExploration",
browse = interactive(),
txdb = NULL,
device = "png",
densityTemplates = list(Pvalue = templatePvalueDensity, Common = templateDensity,
Manhattan = templateManhattan),
template = NULL,
theme = NULL,
digits = 2,
...
)
templatePvalueDensity
templateDensity
templateManhattan
templatePvalueHistogram
templateHistogram
An object of class character
of length 1.
An object of class character
of length 1.
An object of class character
of length 1.
An object of class character
of length 1.
An object of class character
of length 1.
The set of genomic regions of interest as a GRanges
object. All sequence lengths must be provided.
The title of the project.
The names of the variables with values between 0 and 1 to plot density values by chromosome and a table for commonly used cutoffs. Most commonly used to explore p-value distributions. If a named character vector is provided, the names are used in the plot titles.
The names of variables to use for making density plots by chromosome. Commonly used to explore scores and other variables given by region. If a named character vector is provided, the names are used in the plot titles.
A logical
variable differentiating statistically
significant regions from the rest. When provided, both types of regions
are compared against each other to see differences in width, location, etc.
The output from matchGenes used on
regions
. Note that this can take time for a large set of regions
so it's better to pre-compute this information and save it.
The number of regions to include in the interactive table.
An absolute path to a child R Markdown file with code to be evaluated before the reproducibility section. Its useful for users who want to customize the report by adding conclusions derived from the data and/or further quality checks and plots.
The name of output directory.
The name of output HTML file (without the html extension).
If TRUE
the HTML report is opened in your browser once
it's completed.
Specify the transcription database to use for identifying the
closest genes via matchGenes. If NULL
it will
use TxDb.Hsapiens.UCSC.hg19.knownGene by default.
The graphical device used when knitting. See more at
http://yihui.name/knitr/options (dev
argument).
A list of length 3 with templates for the p-value
density plots (variables from pvalueVars
), the continuous
variables density plots (variables from densityVars
), and Manhattan
plots for the p-value variables (pvalueVars
). These templates
are processed by whisker.render. Check the default templates
for more information. The densityTemplates
argument is available for
those users interested in customizing these plots. For example, to show
histograms instead of density plots use templatePvalueHistogram
and
templateHistogram
instead of templatePvalueDensity
and
templateDensity
respectively.
Template file to use for the report. If not provided, will use the default file found in regionExploration/regionExploration.Rmd within the package source.
A ggplot2 theme to use for the plots made with ggplot2.
The number of digits to round to in the interactive table of
the top nBestRegions
. Note that p-values and adjusted p-values won't
be rounded.
Arguments passed to other methods and/or advanced arguments. Advanced arguments:
A two element list with base_size
and
areaRel
that control the text size for the genomic overview plots.
Either html_document
, pdf_document
or
knitrBootstrap::bootstrap_document
unless you modify the YAML
template.
Logical, whether to clean the results or not. Passed to render.
An HTML report with a basic exploration for the given set of genomic regions. See the example report at http://leekgroup.github.io/regionReport/reference/renderReport-example/regionExploration.html.
Set output_format
to 'knitrBootstrap::bootstrap_document'
or
'pdf_document'
if you want a HTML report styled by knitrBootstrap or
a PDF report respectively. If using knitrBootstrap, we recommend the version
available only via GitHub at https://github.com/jimhester/knitrBootstrap
which has nicer features than the current version available via CRAN. You can
also set the output_format
to 'html_document'
for a HTML
report styled by rmarkdown. The default is set to
'BiocStyle::html_document'
.
If you modify the YAML front matter of template
, you can use other
values for output_format
.
The HTML report styled with knitrBootstrap can be smaller in size than the
'html_document'
report.
## Load derfinder for an example set of regions
library("derfinder")
regions <- genomeRegions$regions
## Assign chr length
library("GenomicRanges")
seqlengths(regions) <- c("chr21" = 48129895)
## The output will be saved in the 'renderReport-example' directory
dir.create("renderReport-example", showWarnings = FALSE, recursive = TRUE)
## Generate the HTML report
report <- renderReport(regions, "Example run",
pvalueVars = c(
"Q-values" = "qvalues", "P-values" = "pvalues"
), densityVars = c(
"Area" = "area", "Mean coverage" = "meanCoverage"
),
significantVar = regions$qvalues <= 0.05, nBestRegions = 20,
outdir = "renderReport-example"
)
#> Writing 11 Bibtex entries ...
#> OK
#> Results written to file 'renderReport-example/regionExploration.bib'
#>
#>
#> processing file: regionExploration.Rmd
#>
|
| | 0%
|
|.. | 2%
|
|.... | 5% (docSetup)
|
|...... | 7%
|
|........ | 9% (setup)
|
|.......... | 12%
|
|............ | 14% (pvaluePlots)
|
|.............. | 16%
|
|................ | 19% (regLen)
|
|.................. | 21%
|
|.................... | 23% (regLen2)
|
|...................... | 26%
|
|........................ | 28% (densityPlots)
|
|.......................... | 30%
|
|............................ | 33% (genomeOverview1)
|
|.............................. | 35%
|
|................................ | 37% (manhattanPlots)
|
|.................................. | 40%
|
|.................................... | 42% (genomeOverview2)
|
|...................................... | 44%
|
|........................................ | 47% (annoReg)
|
|.......................................... | 49%
|
|........................................... | 51% (genomeOverview3)
|
|............................................. | 53%
|
|............................................... | 56% (countTable)
|
|................................................. | 58%
|
|................................................... | 60% (vennDiagram)
|
|..................................................... | 63%
|
|....................................................... | 65% (vennDiagramSignificant)
|
|......................................................... | 67%
|
|........................................................... | 70% (bestRegionInfo)
|
|............................................................. | 72%
|
|............................................................... | 74% (unnamed-chunk-1)
|
|................................................................. | 77%
|
|................................................................... | 79% (thecall)
|
|..................................................................... | 81%
|
|....................................................................... | 84% (reproducibility1)
|
|......................................................................... | 86%
|
|........................................................................... | 88% (reproducibility2)
|
|............................................................................. | 91%
|
|............................................................................... | 93% (reproducibility3)
|
|................................................................................. | 95%
|
|................................................................................... | 98% (bibliography)
|
|.....................................................................................| 100%
#> output file: regionExploration.knit.md
#> /usr/local/bin/pandoc +RTS -K512m -RTS regionExploration.knit.md --to html4 --from markdown+autolink_bare_uris+tex_math_single_backslash --output regionExploration.html --lua-filter /__w/_temp/Library/bookdown/rmarkdown/lua/custom-environment.lua --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/pagebreak.lua --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/latex-div.lua --embed-resources --standalone --wrap preserve --variable bs3=TRUE --section-divs --table-of-contents --toc-depth 3 --variable toc_float=1 --variable toc_selectors=h1,h2,h3 --variable toc_collapsed=1 --variable toc_smooth_scroll=1 --variable toc_print=1 --template /tmp/RtmpoLEapv/BiocStyle/template.html --no-highlight --variable highlightjs=1 --number-sections --variable theme=bootstrap --css /__w/_temp/Library/BiocStyle/resources/html/bioconductor.css --mathjax --variable 'mathjax-url=https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML' --include-in-header /tmp/RtmpoLEapv/rmarkdown-str848468a1e49.html --variable code_folding=hide --variable code_menu=1
#>
#> Output created: regionExploration.html
if (interactive()) {
## Browse the report
browseURL(report)
}
## See the example report at
## http://leekgroup.github.io/regionReport/reference/renderReport-example/regionExploration.html
## Check the default templates. For users interested in customizing these
## plots.
## For p-value variables:
cat(regionReport::templatePvalueDensity)
#>
#> ## {{{densityVarName}}}
#>
#> ```{r pval-density-{{{varName}}}, fig.width=10, fig.height=10}
#> p1{{{varName}}} <- ggplot(regions.df.plot, aes(x={{{varName}}}, colour=seqnames)) +
#> geom_line(stat='density') + xlim(0, 1) +
#> labs(title='Density of {{{densityVarName}}}') + xlab('{{{densityVarName}}}') +
#> scale_colour_discrete(limits=chrs) + theme(legend.title=element_blank())
#> p1{{{varName}}}
#> ```
#>
#>
#> ```{r 'pval-summary-{{{varName}}}'}
#> summary(mcols(regions)[['{{{varName}}}']])
#> ```
#>
#>
#> This is the numerical summary of the distribution of the {{{densityVarName}}}.
#>
#> ```{r pval-tableSummary-{{{varName}}}, results='asis'}
#> {{{varName}}}table <- lapply(c(1e-04, 0.001, 0.01, 0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5,
#> 0.6, 0.7, 0.8, 0.9, 1), function(x) {
#> data.frame('Cut' = x, 'Count' = sum(mcols(regions)[['{{{varName}}}']] <= x))
#> })
#> {{{varName}}}table <- do.call(rbind, {{{varName}}}table)
#> if(outputIsHTML) {
#> kable({{{varName}}}table, format = 'markdown', align = c('c', 'c'))
#> } else {
#> kable({{{varName}}}table)
#> }
#> ```
#>
#> This table shows the number of regions with {{{densityVarName}}} less or equal than some commonly used cutoff values.
#>
## For continous variables:
cat(regionReport::templateDensity)
#>
#> ## {{{densityVarName}}}
#>
#> ```{r density-{{{varName}}}, fig.width=14, fig.height=14, eval=hasSignificant, echo=hasSignificant}
#> xrange <- range(regions.df.plot[, '{{{varName}}}']) * c(0.95, 1.05)
#> p3a{{{varName}}} <- ggplot(regions.df.plot[is.finite(regions.df.plot[, '{{{varName}}}']), ], aes(x={{{varName}}}, colour=seqnames)) +
#> geom_line(stat='density') + labs(title='Density of {{{densityVarName}}}') +
#> xlab('{{{densityVarName}}}') + scale_colour_discrete(limits=chrs) +
#> xlim(xrange) + theme(legend.title=element_blank())
#> p3b{{{varName}}} <- ggplot(regions.df.sig[is.finite(regions.df.sig[, '{{{varName}}}']), ], aes(x={{{varName}}}, colour=seqnames)) +
#> geom_line(stat='density') +
#> labs(title='Density of {{{densityVarName}}} (significant only)') +
#> xlab('{{{densityVarName}}}') + scale_colour_discrete(limits=chrs) +
#> xlim(xrange) + theme(legend.title=element_blank())
#> grid.arrange(p3a{{{varName}}}, p3b{{{varName}}})
#> ```
#>
#> ```{r density-solo-{{{varName}}}, fig.width=10, fig.height=10, eval=!hasSignificant, echo=!hasSignificant}
#> p3a{{{varName}}} <- ggplot(regions.df.plot[is.finite(regions.df.plot[, '{{{varName}}}']), ], aes(x={{{varName}}}, colour=seqnames)) +
#> geom_line(stat='density') + labs(title='Density of {{{densityVarName}}}') +
#> xlab('{{{densityVarName}}}') + scale_colour_discrete(limits=chrs) +
#> theme(legend.title=element_blank())
#> p3a{{{varName}}}
#> ```
#>
#> This plot shows the density of the {{{densityVarName}}} for all regions. `r ifelse(hasSignificant, 'The bottom panel is restricted to significant regions.', '')`
#>
## For Manhattan plots
cat(regionReport::templateManhattan)
#>
#> ## Manhattan {{{densityVarName}}}
#>
#> ```{r manhattan-{{{varName}}}, fig.width=10, fig.height=10, message = FALSE}
#>
#> regions.manhattan <- regions
#> mcols(regions.manhattan)[['{{{varName}}}']] <- - log(mcols(regions.manhattan)[['{{{varName}}}']], base = 10)
#> pMan{{{varName}}} <- plotGrandLinear(regions.manhattan, aes(y = {{{varName}}}, colour = seqnames)) + theme(axis.text.x=element_text(angle=-90, hjust=0)) + ylab('-log10 {{{densityVarName}}}')
#> pMan{{{varName}}}
#> rm(regions.manhattan)
#> ```
#>
#> This is a Manhattan plot for the {{{densityVarName}}} for all regions. A single dot is shown for each region, where higher values in the y-axis mean that the {{{densityVarName}}} are closer to zero.
#>
##################################################
## bumphunter example mentioned in the vignette ##
##################################################
## Load bumphunter
library("bumphunter")
## Create data from the vignette
pos <- list(
pos1 = seq(1, 1000, 35),
pos2 = seq(2001, 3000, 35),
pos3 = seq(1, 1000, 50)
)
chr <- rep(paste0("chr", c(1, 1, 2)), times = sapply(pos, length))
pos <- unlist(pos, use.names = FALSE)
## Find clusters
cl <- clusterMaker(chr, pos, maxGap = 300)
## Build simulated bumps
Indexes <- split(seq_along(cl), cl)
beta1 <- rep(0, length(pos))
for (i in seq(along = Indexes)) {
ind <- Indexes[[i]]
x <- pos[ind]
z <- scale(x, median(x), max(x) / 12)
beta1[ind] <- i * (-1)^(i + 1) * pmax(1 - abs(z)^3, 0)^3 ## multiply by i to vary size
}
## Build data
beta0 <- 3 * sin(2 * pi * pos / 720)
X <- cbind(rep(1, 20), rep(c(0, 1), each = 10))
set.seed(23852577)
error <- matrix(rnorm(20 * length(beta1), 0, 1), ncol = 20)
y <- t(X[, 1]) %x% beta0 + t(X[, 2]) %x% beta1 + error
## Perform bumphunting
tab <- bumphunter(y, X, chr, pos, cl, cutoff = .5)
#> [bumphunterEngine] Using a single core (backend: doSEQ, version: 1.5.2).
#> [bumphunterEngine] Computing coefficients.
#> [bumphunterEngine] Finding regions.
#> [bumphunterEngine] Found 15 bumps.
## Explore data
lapply(tab, head)
#> $table
#> chr start end value area cluster indexStart indexEnd L clusterL
#> 10 chr1 2316 2631 -1.5814747 15.8147473 2 39 48 10 29
#> 7 chr2 451 551 1.5891293 4.7673878 3 68 70 3 20
#> 2 chr1 456 526 1.0678828 3.2036485 1 14 16 3 29
#> 5 chr1 2176 2211 0.7841794 1.5683589 2 35 36 2 29
#> 6 chr1 2841 2841 1.2010184 1.2010184 2 54 54 1 29
#> 4 chr1 771 771 0.7780902 0.7780902 1 23 23 1 29
#>
#> $coef
#> [,1]
#> [1,] 0.60960932
#> [2,] -0.09052769
#> [3,] -0.21482638
#> [4,] 0.13053755
#> [5,] -0.21723642
#> [6,] 0.39934961
#>
#> $fitted
#> [,1]
#> [1,] 0.60960932
#> [2,] -0.09052769
#> [3,] -0.21482638
#> [4,] 0.13053755
#> [5,] -0.21723642
#> [6,] 0.39934961
#>
#> $pvaluesMarginal
#> [1] NA
#>
library("GenomicRanges")
## Build GRanges with sequence lengths
regions <- GRanges(
seqnames = tab$table$chr,
IRanges(start = tab$table$start, end = tab$table$end),
strand = "*", value = tab$table$value, area = tab$table$area,
cluster = tab$table$cluster, L = tab$table$L, clusterL = tab$table$clusterL
)
## Assign chr lengths
seqlengths(regions) <- seqlengths(
getChromInfoFromUCSC("hg19", as.Seqinfo = TRUE)
)[
names(seqlengths(regions))
]
## Explore the regions
regions
#> GRanges object with 15 ranges and 5 metadata columns:
#> seqnames ranges strand | value area cluster L clusterL
#> <Rle> <IRanges> <Rle> | <numeric> <numeric> <numeric> <numeric> <integer>
#> [1] chr1 2316-2631 * | -1.581475 15.81475 2 10 29
#> [2] chr2 451-551 * | 1.589129 4.76739 3 3 20
#> [3] chr1 456-526 * | 1.067883 3.20365 1 3 29
#> [4] chr1 2176-2211 * | 0.784179 1.56836 2 2 29
#> [5] chr1 2841 * | 1.201018 1.20102 2 1 29
#> ... ... ... ... . ... ... ... ... ...
#> [11] chr1 631 * | 0.618603 0.618603 1 1 29
#> [12] chr1 1 * | 0.609609 0.609609 1 1 29
#> [13] chr1 2911 * | -0.576423 0.576423 2 1 29
#> [14] chr2 251 * | -0.556160 0.556160 3 1 20
#> [15] chr1 2806 * | -0.521606 0.521606 2 1 29
#> -------
#> seqinfo: 2 sequences from an unspecified genome
## Now create the report
report <- renderReport(regions, "Example bumphunter",
pvalueVars = NULL,
densityVars = c(
"Area" = "area", "Value" = "value",
"Cluster Length" = "clusterL"
), significantVar = NULL,
output = "bumphunter-example", outdir = "bumphunter-example",
device = "png"
)
#> Writing 11 Bibtex entries ...
#> OK
#> Results written to file 'bumphunter-example/bumphunter-example.bib'
#>
#>
#> processing file: bumphunter-example.Rmd
#>
|
| | 0%
|
|.. | 2%
|
|.... | 5% (docSetup)
|
|...... | 7%
|
|........ | 9% (setup)
|
|.......... | 12%
|
|............ | 14% (pvaluePlots)
|
|.............. | 16%
|
|................ | 19% (regLen)
|
|.................. | 21%
|
|.................... | 23% (regLen2)
|
|...................... | 26%
|
|........................ | 28% (densityPlots)
|
|.......................... | 30%
|
|............................ | 33% (genomeOverview1)
|
|.............................. | 35%
|
|................................ | 37% (manhattanPlots)
|
|.................................. | 40%
|
|.................................... | 42% (genomeOverview2)
|
|...................................... | 44%
|
|........................................ | 47% (annoReg)
|
|.......................................... | 49%
|
|........................................... | 51% (genomeOverview3)
|
|............................................. | 53%
|
|............................................... | 56% (countTable)
|
|................................................. | 58%
|
|................................................... | 60% (vennDiagram)
|
|..................................................... | 63%
|
|....................................................... | 65% (vennDiagramSignificant)
|
|......................................................... | 67%
|
|........................................................... | 70% (bestRegionInfo)
|
|............................................................. | 72%
|
|............................................................... | 74% (unnamed-chunk-1)
|
|................................................................. | 77%
|
|................................................................... | 79% (thecall)
|
|..................................................................... | 81%
|
|....................................................................... | 84% (reproducibility1)
|
|......................................................................... | 86%
|
|........................................................................... | 88% (reproducibility2)
|
|............................................................................. | 91%
|
|............................................................................... | 93% (reproducibility3)
|
|................................................................................. | 95%
|
|................................................................................... | 98% (bibliography)
|
|.....................................................................................| 100%
#> output file: bumphunter-example.knit.md
#> /usr/local/bin/pandoc +RTS -K512m -RTS bumphunter-example.knit.md --to html4 --from markdown+autolink_bare_uris+tex_math_single_backslash --output bumphunter-example.html --lua-filter /__w/_temp/Library/bookdown/rmarkdown/lua/custom-environment.lua --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/pagebreak.lua --lua-filter /usr/local/lib/R/site-library/rmarkdown/rmarkdown/lua/latex-div.lua --embed-resources --standalone --wrap preserve --variable bs3=TRUE --section-divs --table-of-contents --toc-depth 3 --variable toc_float=1 --variable toc_selectors=h1,h2,h3 --variable toc_collapsed=1 --variable toc_smooth_scroll=1 --variable toc_print=1 --template /tmp/RtmpoLEapv/BiocStyle/template.html --no-highlight --variable highlightjs=1 --number-sections --variable theme=bootstrap --css /__w/_temp/Library/BiocStyle/resources/html/bioconductor.css --mathjax --variable 'mathjax-url=https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML' --include-in-header /tmp/RtmpoLEapv/rmarkdown-str84830cf1c8c.html --variable code_folding=hide --variable code_menu=1
#>
#> Output created: bumphunter-example.html
## See the example report at
## http://leekgroup.github.io/regionReport/reference/bumphunter-example/bumphunter-example.html